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In this introductory paper we introduce and illustrate somé notions and
problems from Topological Dynamics. This discipline originated from the qualita-
tive theory of differential equations (work of Poincar@&, Lyapunov, Birkhoff and
others). This paper concerns "abstract" Topological Dynamics: there is no direct
relationship with differential equations (cf. [4]1, [2], [9]). After the necessary
definitions (Sections 1, 2, 3) we consider the problems when Qx = EX for a flow
X, and when the equality EX = X % X implies that X is weakly mixing. In the Sections
4 and 5 we state and prove, that the answer to both problems is affirmative if X

has an invariant measure.

1. FLOWS, HOMOMORPHISMS AND FACTORS

Let T be a topological group, arbitrary but fixed. A fiow is a pair X := <X,m>
where X is a compact Hausdorff space and 7 is an action of T on X, i.e, a continuous
mapping w: (t,x) = tx: TxX > X (so we write alternatively m(t,x) or tx or even tex),

satisfying the following conditions:

ex = x; t(sx) = (ts)x for t,s «¢ T and x ¢ X,

EXAMPLES .
1. T=%, 4: X - X ahomeomorphism and n.x := ¢"x for n € Z, x e X (discrete flow).

So every homeomorphism generates a discrete flow. Important ex.‘]amples:
(a) X = Sl ={ze€ tlz] = 1} and ¢(z) := z exp(2wit) for z ¢ $ (rot?tion).. It
is well-known, that the orbit 4"z :ncZ} of every point z of § is demse

in Sl iff 6 is irrational.
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Z . PP
() X = {0,1}™, the space of all 2-sided infinite sequences of 0's and s,

with the ordinary product topology. Let g: X - X be given by (ox), := %

i i
(the sequence e ¥ XX Koeen is shifted ome position to the left).
2.T=R, X= s]xsi (the 2~torus) and w: TXX + X defined by

t‘(":ng) = (Zl exp it, z, éxp ift).

It follows readily from Example la that if © is irrational, then every orbit

{c.(z‘,zz) : t € Rl is dense in the torus (Kromecker).
If X = <X,m> and Y = <Y,0> are flows, then a homomorphism from X to ¥ is a
continuous mapping ¢: X + Y such that ¢or(t,-) = o(t,~)o¢ for all t ¢ T (thus,
$(tx) = t§(x) for all t ¢ T and x ¢ X). Notation: 9t X + ¥, If ¢: X+ Y is a
homomorphism and ¢: X » Y is ahomeomorphism of X onto Y, then ¢ is called an
tgomorphism. A homomorphism ¢ X -+ ¥ such that ¢: X + Y is a surjection is callec
an extension of Y (also X will be called an extemsion of Y); in that case, ¥ is
called a factor of X, and ¢ is also called a factor mapping.

N

EXRPLES.
3. If X = <X,m is a flow and Y is a closed subset of X which is Znvariant, i.e.
ty € ¥ for 211 t € T and y < Y, them o(t,y) := w(t,y) for t € T, y € Y defines

an action 0 of T on ¥, and the inclusion mapping Y + X is a homomorphism of flows

from ¥ to X. (L is called a subflow of X in this case.)
4, If X and ¥ are flows, then a flow XX¥ may be defined by t.(x,y) i= (tx,ty) for

teTand (x,y) € Xx¥. The projections are homomorphisms from X ¥ ¥ onto

X and ¥, respectively, so X and ¥ are factors of X x ¥ in this sense defined

above.

jun
b

Let X be a flow and R an invariant closed equivalence relation in X, i,e. as a

subset of XxX the set R is closed and invariant with respect to the coordinate-
wise action of T on XxX (compare with Example 4 above). Then the quotient space
X/R turns out to be a compact Hausdorff space (because R is closed), and anaction
of T on X/R can be defined by the rule

t.R[x] := R{tx] for t ¢ T and x € X,

Because R is invuriant, this definition is unambiguous; since the quotient
mapping R[~]: X -~ X/R is perfect, this action is easily seen to be continuous.
This flow on X/R will be denoted X/R. Clearly, R[~J: X » X/R is a factor mapping
in the sense above, and X/R is a factor of X.

REMARK, Every factor arizes in the way, described in Example 5. Indeed, let
$: X > Y be a factor mapping of flows. Then
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R¢ 1= {(xl,xz) e XxX % q&(xl) = ¢(x2)}

is easily seen to be a closed invariant equivalence relation in X. The space X/R
is homeomorphic to Y and this homeomorphism establishes an isomorphism between

g/R¢ and Y in such a way, that Rd)[-] corresponds to ¢:

X-———j)—-—--—-»I
RyL- X/R,

2, MINIMAL FLOWS; EQUICONTINUITY

A flow X is called minimal whenever it has no proper closed invariant subsets,
Equivalently, a flow X is minimal whenever each orbit Tx(:={tx:te T}) for x ¢ X is
dense in X. By Zorn's lemma, every flow contains at least one minimal subflow,
(As such a minimal subflow M is the closure of the orbit of amy of its points, i,e,
M = Tx fot each x ¢ M, it is often called a minimal orbit closure.)

In the study of minimal sets it is convenient to restrict oneself to subclasg
which have a richer structure. An example of such a subclass is the class of all
equicontinuous minimal flows. An (arbitrary) flow X is called equicontinuous when-
ever the group of homeomorphisms {r° i teT} is (uniformly) equicontinuous with

respect to the (unique!) uniformity U for X, that is,
Yo e U3Be B (xp,%,) € B = (txl,txz) ¢ a for all t ¢ T.

It is straightforward to show that in an equicontinuous flow X all orbit closures
are minimal (indeed, if X, € ‘f;c'; then one shows X, € _T?(T), hence the orbit closures
form a partition of the space X.

The equicontinuous minimal flows are fairly well understood. For example, if
X is an equicontinuous minimal flow and X is metrizable, then X carries an invaria
metric. Indeed, the closure G := {7t 1 t¢ T} of the given group of homeomorphisms
in X% is a compact topological group of homeomorphisms of X, acting continuously
on X; it is quite easy to show that if a compact group acts on a metric space,
then there is an invariant metric,

Another fact is, that every equicontinuous minimal flow has an invariant
measure (see below for the precise definition). This follows easily from the
existence of Haar measure on compact Hausdorff groups and the structure of such

flows, which will be described in Theorem 1 below.

EXAMPLES.

6. The flows, described in Examples la (with 6 irrational) and 2 (also with 8
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irrational) are minimal and equicontinuous.

7. In the example of 1b, the points x with minimal orbit closure are easy to
characterize, This follows from a result which is known as BIRKHOFF's Decurronce
Theorem); see for example L21, 2.5, Using this, one can easily show that a point
% in the shift dynamical system has minimal orbit closure iff for every finite
block in % (i.e. every finite segment xk"'xk+j in x) there exists a natural
number £ such that every block of length £ in % contains a copy of the given
block. A famous point with minimal orbit closure is the following (the MORSE
minimal sequence): x = BB, where B denotes the miyror-image of B, and

R =

(=]

1101001100101 10 .,
By |
2 2

]

L

L

where each Bn «l is obtained as the concatenation of Bn and the dual B:‘ of Bn.
8, Let ¥: T ~ G be a continuous homomorphism of topological groups with G compact
Hausdorff and ¢{TJ] dense in G. Let H be a closed subgroup of G, and let X be the

(compact Hausdorff!), space of left cosets gh of H in G. Define an action n of T
on ¥ by the rule '

w(t,gH) 1= y(t)gh for t ¢ T, g ¢ G,
Then X 1= <X,%> turns out to be an equicontinuous winimal flow,
The Example 8 above gives a method co obtain all equicontinuous minimal flows:

THEOREM 1. Let X be an equicontinuous minimal flow. Then there exists a closed
subgroup B of the Bohr compactification T of T such that X i¢ teomoyphic to the
Flow on bI/H, defined according to Example 8 abova.

(The proof is a vather easy consequence of what was remarked earlier, viz.
that the closure of (n"i t ¢ T} in x" i5 a compact topological group, For detnils
and references, cf. [10], Theorem 2.4.) In particulag, 4£ T = Z or T = R, thes
an equicontinuous min'mal flow ¥ has the structure of & compact monothetiv, resp.
solenoidel, topological groupe.

3. EQUICONTINUOUS FACTORS

Let X be a minimal flow, Clearly, X has equicomtinuous factors, viz. the
trivial flow (*), consisting of a one-point spuce with the obvious dction of T on
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it. Since there can be only a set of isomorphy classes of equicontinuous factors,
there is a maximal equicontinuous factor (sometimes called universal equicontinuous
factor). This is an equicontinuous factor of X over which every possible equicon~
tinuous factor of X factorizes. In order to prove its existence, consider a set
(ebui X - xu}ae A of representativesof such equivalence classes. Let ¢: X*GI;IA Ya

be the induced mapping, and Y := ¢[X]. Then Y is a closed invariant subset of

o A Y o Moreover, the flow Y is equicontinuous because the full product T Y is so,
and g is minimal, because it is a factor of the minimal flow X. So ¢: X > Z. is a
factor such that Y is equicontinuod; and minimal. Now let y: X + % be any factor
of X with Z equicontinuous and minimal, This factor is isomorphic to one of the
¢u: X Iu' From this, it follows that there is a homomorphism VY +2 s:.t—ch that
¥ = Vo¢ (corresponding to the projection Y + ¥,). Since ¢ is surjective, ¥ is

unique,

.

ueA
\\ /;ro 3

As Y is well-understood, in order to say something about X, one would like to know
something about the factor mapping ¢: X - ¥, or, what amounts to the same (see the
final remark in Section 1), about the eqﬁivalence relation R,. It should be observed
that a maximal equicontinuous ‘mininal factor of a giveﬁ minimal flow X is unique

up to isomorphism, so that the corresponding eq\uvalence relatwn in X is uniquely
determined:

Y .
/ B, SR, end R,cR.
i~ ./
The closed, invariant equivalence relation in X, corresponding to the maximal
equicontinuous factor of X is called the equicontinuous structure relation, and :.t
is denoted by Ex (or, if no confus:.on arises, just E).

THEOREM 2. Let X be a minimal -ﬂow,( and let the subset Qy of XxX be defined as,

Q = N Ta,

5 7 _

Then Q is a closed invariant subset of XxX, and E, ia i'hqgmallest ‘elosed in=-
variant equivalence relation on X in which QK 18 tneluded,
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PROOF. It is easy to see, that Q;_g is closed and invariant in XxX, Moreover, if
Y: X+ Y is a factor, then uniform continuity of y implies, that wxwth] £ Qy. If
Y is equicontinuous, then it is obvious that Q1=Ay, hence WxW[QK] < A;, that is,
QE.E' R‘D' From this it follows that Q‘)g c EZ' So if SO denotes the smallest closed
invariant equivalence relation im X in which Qxis included, then SO S E..

In order to prove the converse inclusion it is sufficient to show that }_{/SO is
equicontinuous: then the universal property of the maximal equicontinuous factor
X/Ex implies, that X ~ g/s0 factorizes over X - X/E_&, so that Ex s soo The proof
that _)Q/SO is equicontinuous is rather deep, and uses ELLIS' joi;t continuity
theorem. See [2], 4.20, 0O

REMARK. In the above proof of the following was used: if Y is a flow, then
Y is equicontinuous iff QY. = Ay. The proof of this is straightforward.

In examples, the set Q, is often fairly easy to determine. Helpfull is the following

description: for a point (xl,xz) € XxX one has (xl,xz) € Qx iff there are nets
(xl(k))AeA and (xz()‘)))“EA in X and (tX)AsA in T such that

(xl(k) ,xz(x)) ~ (x ,xz) in X x X
(thl()‘) ,t)\xz()u_)) ~+ (z,z) for some z ¢ X,

EXAMPLES .,
9. Let T be the free group on two generators t) and tye Define an action of T on s!
as follows

t,.2 := z exp(27if) for z e s‘

tz.exp(Znil;) 1= exp(Z'n'icz) for ¢ ¢ [0;31).

If 6 is irrational, then the flow is minimal. Using the tranformation t, and its
iterates one sees readily, that tg(zl,zz)w (1,1) if p~ =, Hence Q = sixg!,
10. Same as above, but now

exp(Swicz) for ¢ ¢ [0;4]
exp21ri(i+4(l;'i)2) for ¢ ¢ [4;4]
exp2mi (3+4(s-D?) for ¢ € [4;11
epowi.(fM(c-;’-)z) for £ ¢ [2;1]

tzoexp(Z'fril;) =

Now it is a good exercise to show, that

Q = {(exp2mit,exp2miz,) : I;l-czl < 1Y,
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REMARK, 1f Qg = by then X is itself equicontinuous (cf. the remark above), The
other extreme is, that QK = XxX. In that case, also E, = XxX, so L{/Ex = (%)
consequently, X has no non-trivial equicontinuous factors. Of course, this is alsas
the case if Q, # XxX, and yet E_ = XxX (see e.g. Example 10).

A minimal flow X is called weakly mixing whenever ¥xX is topologically ergedic,
that is, invariant subsets of XxX are either dense or nowhere dense (so if A ¢ XxX
is closed, has now-empty interior and is invariant, then A = XsxX). i{ X is

metric, then this property is equivalent to XxX having a point with a dense orbit,

THEOREM 3. If the minimal flow ¥ fe weakly mizing, then X hae no now—trivial ecui
tinuous factors; in fact, QK = KxX,

2o

PROOF. For every a ¢ U, To is closed, invariant has non-empty interior, so Ta = X*%,
Hence QK = al;lﬁ To = XxX, {1

QUESTION 1. Under which additional conditions for a minimal flow X is it true, that
if {has no non-trivial equicontinuous factors then X is weakly mixing? (Note, that
Example 10 shows that in general the converse of Theorem 3 is not true: Q. is a closed
invariant subset of XxX which has non—empty interior and is not equal to XxX.)

Several people have studied this problem; cf. [7] and the references given there,
and also [1].

QUESTION 2. Related is the question: under which conditions for a minimal flow X
is QE an equivalence relation, i.e. = Q,? Also to this problem much research has
been devoted; see for instance [9] and Chapter VIII in [12].

In the next section, a partial answer to these question will be described.

4, INVARIANT MEASURES

Let X be a flow, and let M(X) denote the set of probability meassures on X,
endowed with the weak topology. So either M(X) := {u ¢ C " HETRE I ) u(ly) =1},
a closed convex set of the (compact!) unit ball in Cu(X)' with its weak topology,
or, alternatively, M(X) is the set of all regular Borel measures y in X with total
mass w(X) = 1.

The action of T on X induces an action of T on M(X). This action is given
either by

tu(f) 1= p(for’) = IX f(ex)duix),

for £ ¢ Cu(X), or by
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@A) = u(t ey,

for a Borel set A in X. A measure p on X is called invariant whenever u € M(X) and
ty = u for all t ¢ T. The following result is a special case of a theorem in [7].
It gemeralizes results from [3], [6] and [8],

THEOREM 4. Let X be a minimal flow, and let X have an mvananf: measure. Then Qx i8

an equivalence relation, thatis, E QX'

Moreover, if X has no non~trivial equwontmuous factors, that is, ‘LfEx = XxX, then
X ig weakly mixing.

PROOF. Below, some details will be given. [0

REMARK. There are also several results of this nature which do not require an
invariant measure. See for instance [5]., The "relativation" of the above result will
be described in [11].

5. THE PROOF OF THEOREM 4

Let X be a minimal flow with invariant measure u. The proof of the theorem will
be given by providing a suitable ‘class of continuous invariant pseudometrics om
X. Indeed, if p is such a pseudometric and

Dp 1= {(xl,xz) e XxX § p(xl,xz) = 0},

then Dp is a closed and invariant equivalence relation in X. Hence the flow _X/Dp is
well-defined. Since p is an invariant pseudometric on X, p induces an Znvariant
metric on X/Dp. It is easy to show fhat thic metric is compatible with the (compact!)
quotient~topology of X/Dp, Since T acts on x/Dp by isometrics, the flow §/Dp is

equicontinuous. So

E,cD
x £
by the definition of Ex. We shall now indicate a construction which will produce

a set S of continuous invariant pseudometrics such that

D,:= N D < Q..
X pes P =

This completes the proof of the first part of the theorem: QXS_ x & X._QE' so QX EK
The construction of § is as follows. Let for every subset N of XxX and every point

x « X the section of N at x be denoted by

NlxJ := {x" ¢ X i (x,x") ¢ N},
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Clearly, if ¥ is a closed subset of XxX, then N[x] is closed in X, and we will s:e
below, that if N is non-empty, closed and invariant, then N[x] # ¢.

LEMMA, Let N be a mon-empty closed i{mvariant subset of XxX, and define the mapping
Pyt XX > r' by

ou(xl,xz) g u(NExl] A N[le) for (xl,xz) ¢ XxX,
Then Py ig an invariant comtinuous pseudometric on X.

PROUF. It is straightforward to check that Py is an invariant pseudometric om X«¥,
The proof that Py is continucus on XxX is in several steps.
1. For every x ¢ X, N[x] # #. This follows from the fact that the image of N under
the projection of XxX onto the first coordinate (this projection is a homomorphism
of flows) is a non~empty closed invariant subset of X. So by minimality of X, this
image is all of X, i.e. for all x ¢ X there is a point of the form (x,x') in N, bhence
x' ¢ Nlx] # 6.

Now let 2x denote the space of all clesed, non-empty subsets of X, endowed with
the Vietoris topology. We claim:
2, The mapping x~ N[x]: X » 2% s upper semicontinucus, that is, for every x ¢ X
and every open nbd U of the closed set N[x] in X there exists 2 nbd V of x such
that N[x'] < U for all x e V. The easy proof of this claim is left to the reader.
3. 1f X%, ¢ X, then u(N[x‘]) = u(N[le).
To prove this, let € > 0, and let U be an open nbd of N[xZ] in X such that
u{l) < u(N[le) + ¢ (regularity of u). By 2, there is a nbd V of Xy such that
N{x"] £ U for all x' ¢ V. Since X, has a dense orbit (minimality of X), there is

t € T such that tx, € V, hence thx]] & U. Using invariantness of u and N we
obtain

WONCx, 1) = w(eNx, ) = w@¥ex) D) € w®) < wOx,D) + e,

This holds for every ¢ > 0, so u(N[le) < u(N[xz]), The converse inequality is
proved in a similar fashion.

4. For all x,,X, ¢ X, we have
H(N[xll\ﬂtle) = u(Nlx,\N[x, 1) = iu(N[xl]ANIle),

.where A denotes as usual the symmetric difference. The straightforward proof
follows from the observation, thet u(N[xl]\N[xE]) = U(N[xl]) - u(N[xl]an.xgl), in which
equality the %, and x, may be interchanged by 3.

5. In order to show that py is continuous on XXX, it is sufficient to show that for
every x; ¢ X the mapping
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x> DN(x],x) = u(N[x JaNCx1): X » R

is continuous in the point x, of X. So let ¢ > 0, Let U be an open nbd of N{xl] in
X such that u(U) < u(N[x]]) + ¢/2 (again, regularity of u), and let V be a nbd of
%, such that N[x] ¢ U for all x r V (cf. 2). Then for all x ¢ V:

u(N[x]\N[xl])s u(U\N[x’]) = w(U) - u(N[xl]) < ef2.

Now it follows from 4 that for all x ¢ V

pN(xl,x) = 2u(N[x]\Nl'x]]) <e. 0O

The collection S of continuous invariant pseudometries, referred to above, is
S := {pN : N# 6 aclosed invariant subset of XxX}.

We now show that y = pgs Dp c Ql'

Let (xl,xz) ¢ D,. Then for every closed non—empty invariant subset N of XxX
we have u(N[xl]AN[xZJ) = 0. Now the following observation is crucial: for every
open subset U of X, U # @, one has u(U) > 0, (Indeed, as u is invariant, t supp p =
supp (tu) = supp u for every t € T, so supp u is a non-empty closed invariant
subset of X; so supp u = X, because X is minimal.) In particular, ifUis a non~
empty open subset of X and U & N[xl], then also U & N[x2] (otherwise U\N[x2] would
be a non-empty open subset of N[xl]AN[xZJ, which has measure zero). This observation
will be used below,

We want to show that for arbitrary a ¢ ﬁ, (xl,xz) € Ta. To this end, introduce

N := Ta.
a

Clearly, Na is a non-empty closed invariant subset of XxX, Let U be an open nbd of
x,, Us m(le. Then U ¢ Nu[le, hence by the observation above, U ¢ N‘,‘[x.l J. In par-
ticular, it follows that Xy € Na[xl], i.e. (xl,xz) ech—‘l-‘_a_. Here a e § is arbitrary,

so (x],xz) € agﬁ Ta = QE' So indeed, D&g QK' a

REMARK. The proof above originated as follows, Generalising [7], the second author
obtained a number of new results (see [12] and also [1]). From his proofs, T-S,
Wu extracted the above proof for this special case. This remark also applies to the

following proof.
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The proof of the second part of the theorem uses the ssme trick as was used
ahove.
Assume that B, = XxX. Since E, & Dp for every continuous invariant pseudometric o,
it follows that D‘GN = XxX for every closed invariant non-empty subset N of XxX.
Hence u(N[xlﬁAR’.xz'}) =0 for all x ,x, ¢ X.

We want to show that ¥ /- weakly mixing, that is, that for each open subset
0 of XxX the set TO is dense in XxX. So let for i=1,2, Ui and Vi be open in X; we

have to show that
(vl-vz) f T(leuz) # @.

By minimality of X, there is ¢ ¢ T such that
w:-wznvzq‘ﬁ.

Next, consider tU) and Vl: let X € t:u1 and Xy € VI. Then

ixl} *We t(leuz) < T(Uliuz) =: N.

Consequently, W ¢ ﬁ[xll. Since W # @ and W is open, this implies (same trick as above)
that W N[le, that is

{x,}x W £ N = T, ¥0,).

Therefore, Vlﬂd meets T(UIXUZ) and, consequently, levz neets T(leuz). n}
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